您的瀏覽器不支援 JavaScript喔,請開啟 Javascript 功能。
跳到主要內容
:::
Tamkang University
Tamkang University Chueh-Sheng Memorial Library
Sitemap
Login
繁體中文
X
About
About the DILS / Our Mission / Facility
Goals
Career Prospects
Future Prospects
Faculty
Full-Time Faculty
Adjunct Faculty
Professor Emeritus
Retired Faculty
Administration Staff
Admissions
International Students
Student Life
Programs
Undergraduate Program
University Department
Flexible Educational
Graduate Programs
Graduate Program
E-Learning Executive Program
Research
Journal of Educational Media&Library Sciences
Dissertation
Careers
Forms
Curriculum Section
Registrar Section(Student Affairs)
Registrar Section(Grade Affairs)
General Affairs
Freshman
jouniorhigh
Home
Faculty
Full-Time Faculty
:::
Full-Time Faculty
Adjunct Faculty
Professor Emeritus
Retired Faculty
Administration Staff
Title
A Stable Self-Learning Optimal Fuzzy Control System
Year
88
Semester
1
Publish Date
1999/09/01
Journal Name
A Stable Self-Learning Optimal Fuzzy Control System
Journal Name Other
All Author
Lin, Sinn-cheng; Chen, Yung-yaw
Unit
淡江大學資訊與圖書館學系
Publisher
Volume
Asian Journal of Control 1(3), pp.169-177
Summary
The issue of developing a stable self-learning optimal fuzzy control system is discussed in this paper. Three chief objectives are accomplished: 1) To develop a self-learning fuzzy controller based on genetic algorithms. In the proposed methodology, the concept of a fuzzy sliding mode is introduced to specify the system response, to simplify the fuzzy rules and to shorten the chromosome length. The speed of fuzzy inference and genetic evolution of the proposed strategy, consequently, is higher than that of the conventional fuzzy logic control. 2) To guarantee the stability of the learning control system. A hitting controller is designed to achieve this requirement. It works as an auxiliary controller and supports the self-learning fuzzy controller in the following manner. When the learning controller works well enough to allow the system state to lie inside a pre-defined boundary layer, the hitting controller is disabled. On the other hand, if the system tends to diverge, the hitting controller is turned on to pull the state back. The system is therefore stable in the sense that the state is bounded by the boundary layer. 3) To explore a fuzzy rule-base that can minimize a standard quadratic cost function. Based on the fuzzy sliding regime, the problem of minimizing the quadratic cost function can be transformed into that of deriving an optimal sliding surface. Consequently, the proposed learning scheme is directly applied to extract the optimal fuzzy rulebase. That is, the faster the hitting time a controller has and the shorter the distance from the sliding surface the higher fitness it possesses. The superiority of the proposed approach is verified through simulations.
Keyword
Use Lang
English
ISSN
1934-6093
Journalnature
國外
Included in
UniversityCooperation
CorrespondingAuthor
Reviewsystem
否
Country
中華民國
Open Call for Papers
PublicationStyle
電子版